

Support of Automation System Engineering and Manufacturing Engineering with Intelligent Parts from Component Libraries

Nikolai D'Agostino Head of Research, Digital Factory Solutions Industry Forum 2018, Augsburg

1. CENIT DFS in brief

- 2. Automation-/Manufacturing Engineering with FASTSUITE Edition2
- 3. Mechatronical automation system model
- 4. Intelligent parts as mechatronical model
- 5. Intelligent parts from component libraries
- 6. Conclusion

Data and facts on CENIT AG

1988 founded in Stuttgart

State: 31.12.2016

AUTOMOTIVE 27.7 %

AEROSPACE 23.2 %

F&A 14.6 %

FINANCIAL SERVICES 11.5 %

ITK, MEDIA 7.7 %

OTHERS 5.0 %

PUBLIC SECTOR 3.7 %

CONSUMER 3.7 %

ENERGY 1.1 % CHEMICAL, PHARMA, HEALTH 1.0 %

RETAIL 0.8 %

Equity ratio Turnover 123,8 56,2% Mio. € At stock market since 1998 ENTEROBISES **EBIT** FINANCE 11,8 LOKA MEN Mio. € Long-term partnerships with leading IT-companies like: **IBM** SAP Dassault **Systèmes** ISIN: DE0005407100 615 WKN: 540710 Stock market ID: CSH **Employees** +40 Frankfurt Stock Market Apprentices and Market Segment: Regulated Market (Prime Standard) stundents from universities

5000000 Subsidiaries worldwide Branch offices in Germany 494 38 GROUP 615

Employees

OUR EXPERTISE: PLM AND EIM OPTIMIZES BUSINESS PROCESSES

PRODUCT LIFECYCLE MANAGEMENT

Optimization of digital product development, production, modification, order processing and service

- Focus on holistic, individualized PLM solutions
- More than 1,000 customer projects
- Decades of collaboration with customers of the manufacturing industry and PLM / ERP software companies

ENTERPRISE INFORMATION MANAGEMENT

 Over 20 years of professional expertise with Enterprise Content Management, Business Analytics & Optimization and Application Management Services

- IT-based management of business-related documents and information within core processes
- Integration of PLM and EIM core competencies to create comprehensive solutions with high benefits

3/6/2018 CENIT Company Presentation

Our Digital Manufacturing History

- 1. CENIT DFS in brief
- 2. Automation-/Manufacturing Engineering with FASTSUITE Edition2
- 3. Mechatronical automation system model
- Intelligent parts as mechatronical model
- 5. Intelligent parts from component libraries
- 6. Conclusion

Challenges in the digital factory

Increasing complexity

- Manufacturing processes
- Production facilities
 - Robots, machines, AGVs, ...
 - Complex kinematic systems
 - Co-operating systems
- Vision systems
- Sensors
- Automation system and process control
 - motion control
 - Programmable logic control
- Savety systems

Challenges in the digital factory

Decreasing controlability and inadequate software solutions

- PLM Environment
- OLP Systems
- PLC Programs
- Inadequateness of available software solutions
 - Performance and accuracy
- Inconsistency between digital and real factory
 - Automation system layoutlayout
 - Bahavior of automation system components
 - Controller emulation versus real control
 - Ideal CAD models versus real system shape

Our approach / objective

Reduction of complexity der Komplexität ...

- Increase of process knowledge
 - Invest in research
 - interdisciplinary co-operation with partners
 - Key customers
 - Automation System integrators / manufactures
 - Robot and machine manufactures
 - Research facilities / universities
- FASTSUITE E2 Produktportfolio
 - Requirement oriented, scalable application
 - Easy and intuitive usability

Development of human controlable software solutions!

Simulation based Engineering Process

Unified Simulation platform

Scaleable and open model for the complete manufacturing engineering processes

- Single creation of simulation components
- Layout planing
- Detailling of planing
- Layout- and process verification
- Offline programming
- PLC Program Verification
- Virtual commissioning
- Operation and supervisary control

Based on standards for connectivity and interoperability!

Unified simulation platform

12

Digital copy of physical environment

- Digital simulation models as representatives of physical automation systems
 - Robots, maschines, jigs&tools, ...
 - Controls
 - PLC, RC, CNC
 - Cell controls
 - Connections
 - Mechanical
 - Electric
 - Sensors, Signals, actors
- Performance optimized simulation model layouts, which widley behave like their physical pendants

Unified simulation plattform

Different simulation requirements

- Layout- und Process verification
 - Accessability investigations
 - Geometric shape verification

Simulation can base on emulation in an early development phase

- Offline Programming
 - Partial simulation (forward, backward)
 - Collision avoidance
 - Process verification

Simulation shall base on RCS und VRC modules

- Virtual commissioning
 - Production system simulation (Multi-Resource)
 - Simulation of Logic and behavior

Simulation bases on VRCs (SIL) und HW (HIL)

Process-oriented solutions

For all relevant processes / technologies

- User interface
- tool path calculation
- optimisations
- Technology parameter
- Download content
- Process model (optional)

Advantages:

- Technology optimized programs
- From R&D maintained technologies
- Customisable

- 1. CENIT DFS in brief
- 2. Automation-/Manufacturing Engineering with FASTSUITE Edition2
- 3. Mechatronical automation system model
- Intelligent parts as mechatronical model
- 5. Intelligent parts from component libraries
- 6. Conclusion

Mechatronical system model

Quelle: Kuka

Strategy – Virtal Commissioning

Increase of efficiency

- Commissioning of electric and control systems comprises approximately 90% of complete effort
- A share of 70% is caused by software errors
- Usage of E2 simulation model
 - function description
 - behavior model
 - Connection to PLC programming
 - Transfer of functional description via AutomationML (SFC)
 - Validation of PLC programs during development
 - Commissioing of automation systems

Simulation infrastructure of FASTSUITE Edition 2

Examples of signal communication with external controls

OPC-UA (Mitsubishi)

- Connection to Mitsubishi PLC
- Protocol: OPC-UA (standardised)

Fanuc Robot Interface

- Connection to Fanuc VRC
- Protocol: Fanuc Robot Interface (proprietary)

- 1. CENIT DFS in brief
- 2. Automation-/Manufacturing Engineering with FASTSUITE Edition2
- 3. Mechatronical automation system model
- 4. Intelligent parts as mechatronical model
- 5. Intelligent parts from component libraries
- 6. Conclusion

Intelligent component models in Fastsuite E2

Features of an intelligent system component model

- Geometrical shape (3D model)
- Kinematics chain
- Kinematics parameter
 - Axes limits
- Connection positions
 - mechanical
 - electrical
- Behavior model parameter
 - Joint speeds
 - Joint acceleration
- Signals
 - Joint values
 - Sensor values
 - Control registers

Creation of intelligent system component Fastsuite E2

Planned development

Comprehensive transfer of intelligent system component models from CADENAS parts library

- Direct integration of CADENAS library access in FASTSUITE E2
- Advantages
 - Scalable information content, depending on manufacture
 - Considerable reduced effort for simulation model creation
 - No manual modelling afterwords necessary
 - Error free trabsfer of manufacturer specific components
 - Fullfills pre-requisite of complete digital twin of an automation system

- 1. CENIT DFS in brief
- 2. Automation-/Manufacturing Engineering with FASTSUITE Edition2
- 3. Mechatronical automation system model
- Intelligent parts as mechatronical model
- 5. Intelligent parts from component libraries
- 6. Conclusion

Application of AutomationML

Neutral comprehensive description of models in component libraries with AutomationML

- AutomationML allows complete neutral descritpon of automation system components
- Fits perfectly with requirements for model representation in component libraries like CADENAS

 It is an international standard IEC 62424 which can be used free of charge.

Comprises following information:

AutomationML Architecture

Status on intelligent parts from component libraries

Fastsuite E2 transfer of automation components from CADENAS librariy

Currently available

- Geometrie (CAD-Formate, Collada 1.4.0)
- Kinematik (Collada 1.5.0)

Future concept: Transfer with AutomationML is currently investigated in AutomationML working group "AML-Component"

- Adapter elektric, mechanic, fluidic (AutomationML)
- Verhalten und Signale (AutomationML mit PLCOpenXML)
 CADENAS https://b2b.partscommunity.com

CENIT Fastsuite Edition 2

- 1. CENIT DFS in brief
- 2. Automation-/Manufacturing Engineering with FASTSUITE Edition2
- 3. Mechatronical automation system model
- Intelligent parts as mechatronical model
- 5. Intelligent parts from component libraries
- 6. Conclusion

Support of Automation System Engineering and Manufacturing Engineering with Intelligent Parts from Component Libraries

- Support in all phases of automation system and process engineering with digital factory solution Fastsuite Edition 2
 - Concept phase, detailling, commissioning and operation
- Definition of intelligent parts as mechtronical model in FASTSUITE E2
- Scalable information content based on information provided by manufactures
- In future:
 - Usage of AutomationML for extended data exchange for comprehensive component models from CADENAS parts library
 - Integration of direct acces to CADENAS parts library in FASTSUITE E2

