

Connections using threaded insert Ensat® permit substantially smaller dimensions and consequently material and weight-saving designs.

The illustration below (Fig. 2) shows a screw connection with different screw cross-sections. Despite the smaller

The Ensat ${ }^{\oplus}$ -pull-out resistance due to flange cover

screw cross-section, a screw joint with an Ensat ${ }^{\circledR}$ is capable of withstanding higher axial forces than the screw joint with larger screw cross-section; because the force - both under static and dynamic load - in the Ensat ${ }^{\circledR}$ male thread is distributed evenly over the individual thread turns of the Ensat ${ }^{\circledR}$ male thread.

$\mathrm{E}=$ Diameter cut thread $=$ Outside diameter of the Ensat ${ }^{\circledR}$
Fig. 2

Flange cover

In a workpiece made of a light alloy, the Ensat ${ }^{\oplus} 302$ achieves almost maximum pull-out strength with only 30% flange cover (Fig. 3).

Pull-out strength

The Ensat® is capable of withstanding high loads. When used in light alloys, for example, a degree of pull-out strength is achieved which far exceeds the yield strength of the mating screw 8.8 (Fig. 4).

Fig. 3

Fig. 4

Threaded insert
self-tapping / with hexagonal socket
Ensat ${ }^{\text {® }}$-SBKI
Works Standard 3073 and 3083

Application

The Threaded insert Ensat ${ }^{\oplus}$-SBKI based on the part geometry of the threaded insert Ensat ${ }^{\circledR}$-SB.

The head serves as a support for electrical contacts when fastening several parts simultaneously; when stress is applied against the head, the pull-through force is significantly increased.

Hexagonal socket

The Ensat ${ }^{\circledR}$ is inserted via the hexagonal socket, permitting the achievement of short installation time.
Weitere Vorteile: einfachere Ein Other benefits: More simple driving tools and machines which require only clockwise rotation.

The Ensat ${ }^{\circledR}$ can be extracted without problems before the recycliug process, resulting in lower costs.

Dimensions in mm

Article number	Internal thread	External thread Special thread		$\begin{gathered} \text { Head } \\ \text { diameter } \end{gathered}$	Head heigth	Length	Hexagonal socket	Guideline values for receiving hole diameter	Minimum borehole depth for blind holes T
	A	E	P	E_{1}	K	B	SW +0,1	L	
307300050 ...	M 5	8	1	11	1	8	4,1	7,6 to 7,7	9
308300050	M 5	8	1	11	1	11	4,1	7,6 to 7,7	13
307300060 ...	M 6	10	1,25	13	1,5	9,5	4,9	9,5 to 9,6	10
$308300060 \ldots$	M 6	10	1,25	13	1,5	13,5	4,9	9,5 to 9,6	15
307300080 ...	M 8	12	1,5	15	1,5	10,5	6,6	11,3 to 11,5	11
308300080 ...	M 8	12	1,5	15	1,5	15,5	6,6	11,3 to 11,5	17
$307300100 \ldots$	M 10	14	1,5	17	1,5	11,5	8,3	13,3 to 13,5	13
$308300100 \ldots$	M 10	14	1,5	17	1,5	19,5	8,3	13,3 to 13,5	22

Example for finding the article number

Short design
Long design

Materials	Case-hardened steel, zinc plated, blue passivated
Case-hardened steel, zinc-nickel plated, transparent passivated	
Brass	

Other materials, designs and finishes on request.
Tolerance
Thread made of case-hardened, zinc plated and blue passivated steel: Ensat®-SBKI 307300050.110

Works Standard 307
Works Standard 308
Case-hardened steel, zinc plated, blue passivated
Case-hardened steel, zinc-nickel plated, transparent passivated Brass

ISO 2768-m
Internal thread A: as per ISO 6H

Self-tapping threaded insert hexagonal socket Ensat ${ }^{\circledR}$-SBKI to Works Standard 3073 with internal thread $A=$ M5

External thread E: Special thread with flattened thread root, as per KKV standard

