

Connections using threaded insert Ensat® permit substantially smaller dimensions and consequently material and weight-saving designs.

The illustration below (Fig. 2) shows a screw connection with different screw cross-sections. Despite the smaller

The Ensat ${ }^{\oplus}$ -pull-out resistance due to flange cover

screw cross-section, a screw joint with an Ensat ${ }^{\circledR}$ is capable of withstanding higher axial forces than the screw joint with larger screw cross-section; because the force - both under static and dynamic load - in the Ensat ${ }^{\circledR}$ male thread is distributed evenly over the individual thread turns of the Ensat ${ }^{\circledR}$ male thread.

$\mathrm{E}=$ Diameter cut thread $=$ Outside diameter of the Ensat ${ }^{\circledR}$
Fig. 2

Flange cover

In a workpiece made of a light alloy, the Ensat ${ }^{\oplus} 302$ achieves almost maximum pull-out strength with only 30% flange cover (Fig. 3).

Pull-out strength

The Ensat® is capable of withstanding high loads. When used in light alloys, for example, a degree of pull-out strength is achieved which far exceeds the yield strength of the mating screw 8.8 (Fig. 4).

Fig. 3

Fig. 4

Threaded insert

Self-tapping with chip reservoirs and closed floor

Ensat ${ }^{\oplus}$-SBT
Works Standard 3570 and 3580

Application

This special Ensat®-SBT was developed primarily for applications in which chips created by self-tapping process exert a detrimental effect and could cause serious damage or failure during subsequent operation of the installed assembly - for example in electronic equipment.

The chips created during the installation process are stored in these reservoirs and cannot drop into sensitive equipment components.

The closed floor additionally prevents the penetration of chips into the female thread.

The thre cutting bores distributet as chip reservoirs.

Dimensions in mm

Article number	Internal thread	External thread Special thread		Length	Thread depth min.	Borehole diameter guideline value	Minimum borehole depth for blind holes
$350000040 \ldots$	A	E	P	B	C	L-0,1	T

Example for finding

 the article numberShort design Long design

Materials

Tolerance

Thread Internal thread A: as per ISO 6H
External thread E: Special thread with flattened thread root, as per KKV standard Internal thread UNC, UNF, Whitworth on request

