Clifa[®] installation ...

Installation

The receiving hole is punched, lasered or drilled **but not deburred or countersunk.**

With punched holes, Clifa[®] is pressed in from the punching burr side. The pressin process takes place on a plane parallel basis using a customary press with adjustable pressure level, until the surface of the shoulder in the Clifa[®] pressin nut comes to rest flat against the surface of the sheet metal.

In the case of the Clifa[®]-SP/SPD/SPS stud, the head must be fully pressed in and come to rest flush with the surface of the sheet metal.

Pressure which is too high or applied only on one side as well as inclined support surfaces must be avoided wherever possible.

Examples for mounting

Press-in nut Clifa®

Fig. 7 Press-in stud Clifa®-SP

Kerb Konus 🗘

We recommend			
Clifa®-M	(Works Standard 500 0 to 503 0)		
Clifa®-AM	(Works Standard 503 8 to 525 8)		
Clifa®-AL	(Works Standard 503 6 to 525 6)		
Clifa®-ABO/-ABG	(Works Standard 570 0 to 571 0)		
Clifa [®] -SPD	(Works Standard 5 2)		
Clifa [®] -SA	(Works Standard 515 4 to 534 4)		
Clifa [®] -SAD	(Works Standard 515 9 to 534 9)		
	We recomme Clifa®-AM Clifa®-AL Clifa®-ABO/-ABG Clifa®-SPD Clifa®-SA Clifa®-SA		

... technologies for a reliable hold

Press-in stud

Press-fit geometrie processed protruding at the head

Clifa[®]-SAD Works Standard

506 9 to 534 9

Application

- Clifa®-SAD press-in grub screws are processed protruding at the head – see diagram –, and are used to manufacture wear-resistant, highly resilient screw connections in thin-walled moulded parts made of:
- SteelStainless steel
- Brass
- Copper
- Light metal, etc.

Due to the low height of the serrations, Clifa[®]-SAD is suitable for use in lower moulding strengths than necessary with Clifa[®]-SA.

Clifa[®]-SAD has a strengthened head shape, making it more resilient to threading than Clifa[®]-SPD.

							Dimensions in mm
Article number	Internal thread	Workpiece thickness	External diameter	Head heigth	Hole diameter	Minimum spacing	Tightening torque of the nut (guidline values for sheet metal)
	Α	≥ M	E	K ±0,1	L +0,1	≥W	≤ Nm
5 900 050	M 5	1,0	8,5	1,5	5	10,5	6,0
5 900 060	M 6	1,0	10,0	1,5	6	11,5	10,0
5 900 080	M 8	1,2	12,5	1,75	8	12,5	25,0
5 900 100	M 10	1,2	15,7	2,2	10	13,5	36,0

Article number <u>first grou</u> p of digits	Length	Available			
(selection series)	B*) ±0,2	M 5	M 6	M 8	M 10
510 900	10,0	Х	Х		
512 900	12,0	Х	Х	Х	
515 900	15,0	Х	Х	Х	Х
520 900	20,0	Х	Х	Х	Х
525 900	25,0	Х	Х	Х	Х
530 900	30,0	Х	Х	Х	Х
534 900	34,0	Х	Х	Х	Х
	Article number <u>first group</u> of digits (selection series) 510 900 512 900 515 900 520 900 525 900 530 900 534 900	Article number first group of digits (selection series)Length $510\ 900\ \dots\ 10,0$ $10,0$ $512\ 900\ \dots\ 12,0$ $12,0$ $515\ 900\ \dots\ 15,0$ $15,0$ $520\ 900\ \dots\ 25,0$ $20,0$ $525\ 900\ \dots\ 25,0$ $30,0$ $534\ 900\ \dots\ 34,0$ $34,0$	Article number first group of digits (selection series) Length 510 900 B*) ±0,2 M 5 510 900 10,0 X 512 900 12,0 X 515 900 15,0 X 520 900 20,0 X 525 900 25,0 X 530 900 30,0 X 534 900 34,0 X	Article number first group of digits (selection series) Length Avai Avai (selection series) 510 900 10,0 X X 512 900 12,0 X X 515 900 15,0 X X 520 900 20,0 X X 525 900 25,0 X X 530 900 30,0 X X 534 900 34,0 X X	Article number first group of digits (selection series) Length Available 510 900 B*) ±0,2 M 5 M 6 M 8 510 900 10,0 X X X 512 900 12,0 X X X 515 900 15,0 X X X 520 900 20,0 X X X 525 900 25,0 X X X 530 900 30,0 X X X 534 900 34,0 X X X

Example for finding
the article numberPress-in stud Clifa®-SAD, M5 made of tempered, zinc plated and blue passivated steel,
20 mm long: Clifa®-SAD 520 900 050.110

Materials	Steel tempered, zinc plated, blue passivated **	Article no. (fourth group of digits) 110
	Steel tempered, zinc/nickel plated, transparent passivated **	Article no. (fourth group of digits)
	Stainless steel	Article no. (fourth group of digits) 500

Other dimensions on request

Threaded ends Press-in stud with several dog points on request. See data sheet on page 25.

Tolerances ISO 2768-m

Thread Stud thread A: as per ISO 6g

Press-in force Guideline values for press-in force, see page 24

*) Length B available up to 60 mm

Press-in stud in tempered steel, available in customary strength classes.

**)

r: Hole	Countersink for	Dimensions in mm Press-in force
r: Hole	Countersink for	Press-in force
	I Seriations	
L1 +0,1	N +0,1	kN
2,6	3,4	8,9 to 12
3,1	4,0	10,5 to 19
4,1	5,2	16 to 25
5,1	6,4	29 to 35
6,1	7,6	30 to 50
8,1	10,2	30 to 60
	2,6 3,1 4,1 5,1 6,1 8,1	2,6 3,4 3,1 4,0 4,1 5,2 5,1 6,4 6,1 7,6 8,1 10,2

The press-in force F is dependent on the Clifa[®] dimension, the material and the thickness of the shaped component and also the type of serration at the head. The Clifa[®] head must be fully embedded and must come to rest flush with the surface of the sheet metal. Excessive force must be avoided. The hole diameter of the part to be screwed on $\approx A + 0.6$ mm.

The press-in force F is dependent on the Clifa[®] dimension, the material and the thickness of the shaped component and also the type of serration at the head. The Clifa[®] head must be fully embedded and must come to rest flush with the surface of the sheet metal. Excessive force must be avoided. The hole diameter of the part to be screwed on $\approx A + 0.6$ mm.

Kerb Konus 🗘	Press-in stud Press-in forces		Clifa [®] -SA/SAD	
				Dimensions in mm
↓ ^F	Anvil for: Clifa®	Hole	Countersink for serrations	Press-in force
Die		L1 +0,1	N+0,1	kN
N 45°	M 3	3,1	4,0	9,0 to 15,0
	M 4	4,1	5,2	14,5 to 38
Anvil B + 5mm	M 5	5,1	6,4	21 to 42
	M 6	6,1	7,6	21 to 50
	M 8	8,1	10,2	21 to 60
	M 10	10,1	12,2	32 to 84

The press-in force F is dependent on the Clifa[®] dimension, the material and the thickness of the shaped component and also the type of serration at the head. Excessive force must be avoided. The hole diameter of the part to be screwed on $\approx A + 0.6$ mm.

Threaded ends for press-in grub screws

Clifa[®]-SP/-SPD Clifa[®]-SA/-SAD

Application

Depending on the demands placed on the Clifa® press-in grub screws, we offer a variety of threaded ends. Further threaded ends on request.

Sub-function	Type of threaded end				
Sub-TullClion	KKV	KK	PN	KK-MAG	
Protection of start of thread	ĸ	7	7	7	
Larger displacement when fastening	И	→	7	7	
Prevention of tilting when fastening	Ы	\rightarrow	\rightarrow	7	
Usable thread length (Version for components of the same length)	7	\rightarrow	\rightarrow	Ŕ	

Type of threaded end: **KKV** DIN EN ISO 4753 (RL)

Type of threaded end: KK

Type of threaded end: KK-MAG

Type of threaded end: PN